• Что бы вступить в ряды "Принятый кодер" Вам нужно:
    Написать 10 полезных сообщений или тем и Получить 10 симпатий.
    Для того кто не хочет терять время,может пожертвовать средства для поддержки сервеса, и вступить в ряды VIP на месяц, дополнительная информация в лс.

  • Пользаватели которые будут спамить, уходят в бан без предупреждения. Спам сообщения определяется администрацией и модератором.

  • Гость, Что бы Вы хотели увидеть на нашем Форуме? Изложить свои идеи и пожелания по улучшению форума Вы можете поделиться с нами здесь. ----> Перейдите сюда
  • Все пользователи не прошедшие проверку электронной почты будут заблокированы. Все вопросы с разблокировкой обращайтесь по адресу электронной почте : info@guardianelinks.com . Не пришло сообщение о проверке или о сбросе также сообщите нам.

REST vs GraphQL: Side-by-Side Analysis with Real-World Examples & Proven Best Practices

Sascha Оффлайн

Sascha

Заместитель Администратора
Команда форума
Администратор
Регистрация
9 Май 2015
Сообщения
1,480
Баллы
155

Overview

  • REST (Representational State Transfer): a mature architectural style using resource-based endpoints (URLs) and standard HTTP methods (GET, POST, PUT, DELETE).
  • GraphQL: a query language/runtime from Meta (Facebook) exposing a typed schema and allowing clients to request exactly the data they need—often through a single endpoint.
Adoption & Industry Statistics

Metric2023–2025 Data (approx.)
Developers using REST APIs ~80-90% (Postman/SmartBear/State of API reports)
Developers using GraphQL ~20-30% (and rising rapidly)
GraphQL growthTriple-digit % growth in many surveys

REST remains the default for most production APIs, but GraphQL adoption is growing—especially for front-end heavy apps and multi-client ecosystems.

Key Technical Dimensions

DimensionRESTGraphQLTrade-Off Notes
Data FetchingFixed endpoints; risk of over/under-fetchingClients specify exactly the fields and nested data neededGraphQL reduces payload size but can create N+1 resolver issues
EndpointsMany endpoints; resource/method mappingUsually one endpoint with a typed schemaSingle endpoint complicates routing & rate-limiting
CachingMature HTTP caching (ETag, CDN, proxies)Requires custom or resolver-level cachingREST wins on simplicity
PerformanceExcellent for simple, cacheable GETsReduces round trips for nested data; better on mobileNeeds batching, complexity limits
VersioningVersioned endpoints (/v1/, /v2/)Schema evolution via field addition & deprecationGraphQL avoids version sprawl but needs careful deprecation
SecurityStraightforward (OAuth, JWT, ACLs)Must guard against deep or costly queries, DOS, field-level authGraphQL demands query cost analysis
ToolingSwagger/OpenAPI, stable ecosystemStrong typing, introspection, auto-gen clientsHigher learning curve
ScalabilityPredictable; endpoints scale independentlyRequires optimized resolvers and cachingPotential single-endpoint bottleneck
Quantitative Comparisons

  • Payload reduction: Migrating to GraphQL often cuts 94% of fields and ~99% of bytes for typical queries.
  • Latency: GraphQL can be up to ~60–70% faster for complex nested queries compared to multiple REST calls.
  • Throughput: REST handles high-volume cached reads more predictably.
When to Use REST vs GraphQL

ScenarioREST AdvantageGraphQL Advantage
Simple CRUD/Internal ToolsQuick to build & maintainOverkill unless data is deeply nested
Mobile / Low BandwidthWorks but may overfetchFewer round-trips and smaller payloads
Multiple Client TypesEndpoint proliferation likelyClients query only what they need
Rapidly Evolving Front-endVersioning requiredAdd/deprecate fields without breaking clients
High-volume, cache-friendly dataLeverages CDN/HTTP cachingHarder to cache effectively
Public APIs / Third-party EcosystemsWidely understood; easy onboardingRequires robust docs & query cost limits
%-Based Trade-offs

  • After 2–3 nested relationships, GraphQL typically outperforms REST in total latency.
  • GraphQL often reduces network payloads by 30–80%, sometimes more, compared to REST overfetching.
  • REST remains preferred when >70% of requests can be served from HTTP/CDN caches.
Organizational Considerations

  • Upfront Investment: GraphQL needs schema design, resolvers, monitoring.
  • Maintenance: REST needs endpoint versioning; GraphQL risks schema bloat.
  • Monitoring: REST uses HTTP codes; GraphQL encodes errors in response body—custom tooling required.
  • Team Skills: GraphQL thrives where front- and back-end teams collaborate closely.
Typical Use-Case Patterns

DomainREST StrongholdGraphQL Sweet Spot
E-commerceInventory updates, paymentsProduct catalog, nested filters
Social NetworksAuth, postingFeeds, comments, reactions
DashboardsSimple metricsMulti-panel, dynamic queries
Mobile AppsStable datasetsLow-bandwidth optimized views

Hybrid strategies are common: REST for stable, high-throughput endpoints and GraphQL as a front-end gateway aggregating multiple microservices.

Best Practices

  • Schema-first design with clear type definitions.
  • Query complexity limits and depth restrictions to avoid DOS.
  • Caching: persisted queries, client normalization (GraphQL); HTTP/CDN (REST).
  • Field-level authorization for GraphQL.
  • Monitoring & Observability: log query signatures, track resolver performance.
Risks & Gotchas

  • GraphQL N+1 query problems if resolvers aren’t batched.
  • Caching complexity vs REST’s straightforward HTTP cache.
  • Security: must guard against unbounded queries and field exposure.
  • Schema bloat: regular deprecation and cleanup required.
Decision Matrix

CriteriaChoose REST if…Choose GraphQL if…
Data relationships shallow✅
Multiple client types✅
Rapid UI iteration✅
High read volume, strong caching✅
Bandwidth-constrained clients✅
Strict audit/compliance✅
Conclusion

  • REST remains dominant for its simplicity, predictability, and caching advantages.
  • GraphQL shines for complex, front-end heavy applications with multiple clients and rapidly evolving data needs.

Most mature teams blend both:

  • REST for high-volume, stable, cache-friendly endpoints.
  • GraphQL as a Backend-for-Frontend (BFF) layer or for nested, dynamic queries.

Choosing between them isn’t binary—it’s about matching each part of your system to the trade-offs that best fit its performance, evolution, and organizational needs.



Источник:

Пожалуйста Авторизируйтесь или Зарегистрируйтесь для просмотра скрытого текста.

 
Вверх Снизу