• Что бы вступить в ряды "Принятый кодер" Вам нужно:
    Написать 10 полезных сообщений или тем и Получить 10 симпатий.
    Для того кто не хочет терять время,может пожертвовать средства для поддержки сервеса, и вступить в ряды VIP на месяц, дополнительная информация в лс.

  • Пользаватели которые будут спамить, уходят в бан без предупреждения. Спам сообщения определяется администрацией и модератором.

  • Гость, Что бы Вы хотели увидеть на нашем Форуме? Изложить свои идеи и пожелания по улучшению форума Вы можете поделиться с нами здесь. ----> Перейдите сюда
  • Все пользователи не прошедшие проверку электронной почты будут заблокированы. Все вопросы с разблокировкой обращайтесь по адресу электронной почте : info@guardianelinks.com . Не пришло сообщение о проверке или о сбросе также сообщите нам.

Python for SQL: Beginner Level-Introduction to Database Connectivity

Sascha Оффлайн

Sascha

Заместитель Администратора
Команда форума
Администратор
Регистрация
9 Май 2015
Сообщения
1,483
Баллы
155


Outline

Python is a widely used and flexible programming language applicable in numerous areas including web development, scientific computing, and data analysis. A key advantage of Python is its capability to connect with and interact with databases. In this article, we will provide an introduction to using Python for SQL and show how it can be utilized to connect to and manage databases.
Although SQL is a robust language for interacting with databases, it does have its drawbacks. For instance, crafting intricate queries or conducting data analysis can be challenging when relying solely on SQL. In contrast, Python is a versatile programming language that excels in executing complex data analysis, machine learning, and web development activities. By integrating Python with SQL, you can leverage the strengths of both languages to carry out more sophisticated data analysis and database management tasks.

Python for SQL: Database Connectivity
To link Python with a database, you must utilize a Python library or module that offers a database driver. A database driver is a software element that establishes a connection between the Python application and the database management system.
Numerous well-known Python libraries exist for connecting to databases, such as:

  1. PyMySQL: A pure Python MySQL driver that allows you to connect to a MySQL database and perform SQL queries.
  2. psycopg2: A PostgreSQL database adapter that provides access to the PostgreSQL database server.
  3. sqlite3: A built-in Python library for working with SQLite databases.
  4. SQLAlchemy: A SQL toolkit and Object-Relational Mapping (ORM) library that provides a high-level interface to SQL databases.

In this article, we will utilize the PyMySQL library to establish a connection with and manage a MySQL database. PyMySQL is a Python library designed for connecting to MySQL databases. MySQL, an open-source database management system based on the relational model, is commonly used for web applications. PyMySQL offers an easy-to-use interface for connecting to MySQL databases and executing SQL queries.
Connecting to a MySQL Database
To connect to a MySQL database using Python, you need to install the PyMySQL library. Run the following command to install it using the pip package manager:


pip install pymysql




Once you have installed the PyMySQL library, you can create a connection to a MySQL database using the connect() function. The connect() function takes several parameters, including the hostname, username, password, and database name. To connect to a MySQL database using pymysql, we need to create a connection object. To connect to the database, one must utilise the connection object. Here’s an example of how to create a connection object:


import pymysql
connection = pymysql.connect(host='localhost', user='root', password='passCode', db='your_database')




In this example, we are connecting to a MySQL database running on the local machine. We are using the root user and the password “passCode” to authenticate ourselves. Finally, we are connecting to a database called “your_database”.

Creating a Cursor object
A cursor object is used to execute SQL queries against a database. A cursor object acts as a pointer to a specific location in the database, allowing you to retrieve, insert, update, or delete data. In PyMySQL library, creating a cursor object is an essential step in executing SQL queries.

The database connection object is used to generate the cursor object. To create a cursor object, you need to call the cursor() method on the database connection object. Here is an example:


import pymysql
# Open database connection
db = pymysql.connect("localhost","user","password","database_name" )

# Create a cursor object
cursor = db.cursor()

# Execute SQL query
cursor.execute("SELECT * FROM table_name")

# Fetch all rows
rows = cursor.fetchall()

for row in results:
print(row)
# Close database connection
db.close()




In this example, we first open a database connection using the PyMySQL library. The connection requires the host, user, password, and database name to connect to a MySQL database. Once the connection is established, we create a cursor object using the cursor() method.

After the cursor object is created, we can execute an SQL query using the execute() method. In this example, we execute a SELECT statement that retrieves all rows from a specific table in the database.

The fetchall() method is then called on the cursor object to retrieve all rows from the SELECT statement. The rows are stored in a variable named rows. We are iterating over the results and printing each row. Then, we close the database connection using the close() method.
_
It’s important to note that the cursor object does not retrieve any data until a query is executed. The execute() method is used to execute the SQL query, and the fetchall() method retrieves the data from the query._

To add data to the database
In order to add data to a database with pymysql, it is necessary to first create a connection to the database and then execute SQL commands. Below is an example code snippet demonstrating how to insert data into a MySQL database using pymysql:


import pymysql

# Connect to the database
connection = pymysql.connect(host='localhost',
user='username',
password='password',
db='database_name')

# Cursor object creation
cursor = connection.cursor()

# Define the SQL query
sql_query = "INSERT INTO books (author, name, mail, pages) VALUES (%s, %s, %s, %d)"

# Data insertion
data = ("Enid", "Secret Seven", "enid@example.com", 21)


# Execute the query with the data
cursor.execute(sql_query, data)

# Commit the changes
connection.commit()

# Close the cursor and the connection
cursor.close()
connection.close()




The SQL query we establish is an INSERT statement designed to add data to the books table. The data intended for insertion is indicated by the query’s %s and %d placeholders.

Subsequently, we define the data to be inserted as a tuple comprising three elements: the name, email, and phone number. We execute the query with the data by utilizing the execute() method of the cursor object. Following this, we commit the changes through the commit method of the connection object.

It is important to note that if you wish to insert multiple rows of data simultaneously, you may opt for the executemany() method instead of execute(). The executemany() method accepts a list of tuples as its second argument, with each tuple representing a row of data to be inserted.
Dealing with Errors
Handling errors is an important part of writing reliable code in PyMySQL. Here’s an example of how to handle errors


import pymysql

# Connect to the database
try:
connection = pymysql.connect(host='localhost',
user='username',
password='password',
db='database_name')
except pymysql.Error as e:
print("Error connecting to database:", e)
exit()

# Create a cursor object
try:
cursor = connection.cursor()
except pymysql.Error as e:
print("Error creating cursor:", e)
exit()

# Define the SQL query
sql_query = "INSERT INTO books (author, name, mail, pages, weight) VALUES (%s, %s, %s, %d, %d)"

# Define the data to be inserted
data = ("Enid", "Secret Seven", "enid@example.com", 21, 2)

# Execute the query with the data
try:
cursor.execute(sql_query, data)
except pymysql.Error as e:
print("Error executing query:", e)
exit()

# Commit the changes
try:
connection.commit()
except pymysql.Error as e:
print("Error committing changes:", e)
exit()

# Close the cursor and the connection
try:
cursor.close()
connection.close()
except pymysql.Error as e:
print("Error closing connection:", e)
exit()




In the example above, we use try-except blocks to handle errors and exceptions at different stages of the code. When we connect to the database, we use a try-except block to catch any errors that may occur. If an error occurs, we print an error message and exit the program.

We do the same thing when we create a cursor object, execute the query, commit the changes, and close the cursor and connection.

If an error occurs at any of these stages, we print an error message and exit the program.
**
Conclusion**

  1. Python can be used to connect to SQL databases and execute queries using libraries like PyMySQL, sqlite3, and sqlalchemy.
  2. Using Python with SQL can allow for more powerful and flexible data analysis and manipulation, as well as easier automation of database tasks.
  3. Python code can be used to insert, update, and delete data in a database, as well as query and retrieve data.
  4. When using Python with SQL, it’s important to handle errors and exceptions gracefully to ensure reliability and prevent unexpected behavior.
  5. Python can also be used with other database technologies, such as NoSQL databases and object-relational mappers (ORMs), depending on the needs of your project.
  6. Learning how to use Python with SQL can be a valuable skill for data analysts, data scientists, and software developers who work with databases.
  7. There are various resources from where you can master Python in SQL for data analysis. Some of them are — Edx, Scaler, freecodecamp, Kdnuggets, etc.



Источник:

Пожалуйста Авторизируйтесь или Зарегистрируйтесь для просмотра скрытого текста.

 
Вверх Снизу