• Что бы вступить в ряды "Принятый кодер" Вам нужно:
    Написать 10 полезных сообщений или тем и Получить 10 симпатий.
    Для того кто не хочет терять время,может пожертвовать средства для поддержки сервеса, и вступить в ряды VIP на месяц, дополнительная информация в лс.

  • Пользаватели которые будут спамить, уходят в бан без предупреждения. Спам сообщения определяется администрацией и модератором.

  • Гость, Что бы Вы хотели увидеть на нашем Форуме? Изложить свои идеи и пожелания по улучшению форума Вы можете поделиться с нами здесь. ----> Перейдите сюда
  • Все пользователи не прошедшие проверку электронной почты будут заблокированы. Все вопросы с разблокировкой обращайтесь по адресу электронной почте : info@guardianelinks.com . Не пришло сообщение о проверке или о сбросе также сообщите нам.

How to Resolve Spark 3 Hanging on Token Request from Azure AD

Lomanu4 Оффлайн

Lomanu4

Команда форума
Администратор
Регистрация
1 Мар 2015
Сообщения
1,481
Баллы
155
Introduction


When working with cloud technologies, especially those involving Azure services, you might encounter unexpected behaviors. In this case, we've observed discrepancies between the old and new versions of Apache Spark when requesting a token from Azure Active Directory (AD) using the azure-security-keyvault-secrets_4.2.6 library. If Spark 3 appears to hang after attempting to retrieve a token, it’s crucial to understand why this occurs and how to resolve it effectively.

Understanding the Issue

Difference in Behavior


The difference in behavior between the old (1.8.0_362) and new Spark (1.8.0_382) versions can be attributed to several factors, including changes in internal libraries, dependency updates, or adjustments in how authentication is handled. In the old Spark version, connections to Azure Key Vault were successfully established even when token validation resulted in unauthorized errors, leading to a smooth transaction towards getting the right token.

Why the New Spark Hangs


In contrast, the new Spark version hangs during the token acquisition process. This could stem from several potential issues:

  • Dependency Conflicts: Different libraries might be used in Spark 3, leading to compatibility issues when invoking token requests.
  • Improper Configuration: Changes in required configurations for Azure SDKs, especially with Azure AD authentication.
  • Java Version Compatibility: Variations in performance between Java versions can also be implicated, affecting how libraries interact with Azure.
Step-by-Step Solution


To resolve this, we need to ensure that the configurations are correct and the version compatibility is accounted for. Here’s a structured approach to getting Spark 3 working with Azure AD properly.

Step 1: Check Java Version


Make sure you’re using the correct version of Java that supports Spark and the Azure libraries. Ideally, you should be using a version that aligns well with the Spark release. Spark 3 works best with Java 11 or 8 but ensure compatibility with your libraries.

Verify Java Version


You can check your Java version in the terminal:

java -version


If you notice that you are using an incompatible version, consider upgrading or changing it.

Step 2: Configure Azure Credentials


Ensure that your Azure AD credentials are set up correctly. Here’s how you can configure the ClientSecretCredentialBuilder or DefaultAzureCredentialBuilder.

Example Credentials Setup


import com.azure.identity.ClientSecretCredential;
import com.azure.identity.ClientSecretCredentialBuilder;

ClientSecretCredential clientSecretCredential = new ClientSecretCredentialBuilder()
.clientId("<YOUR_CLIENT_ID>")
.clientSecret("<YOUR_CLIENT_SECRET>")
.tenantId("<YOUR_TENANT_ID>")
.build();


Make sure to replace placeholders with actual values.

Step 3: Debugging Token Acquisition


If the behavior persists, try enabling detailed logging for your Spark application. This can provide insights into where the process is hanging. You can set logging level in your log4j.properties file:

log4j.logger.com.azure=DEBUG
log4j.logger.org.apache.spark=INFO

Step 4: Review Spark Configuration


Make sure to review your Spark configuration settings. The integration with Azure services can require specific flags to be set. Verify settings in your Spark configuration file are correctly defined.

Example Spark Configuration


spark.azure.keyvault.enabled=true
spark.azure.keyvault.clientId=<YOUR_CLIENT_ID>
spark.azure.keyvault.clientSecret=<YOUR_CLIENT_SECRET>
spark.azure.keyvault.tenantId=<YOUR_TENANT_ID>

Step 5: Update Dependencies


Ensure all dependencies including azure-security-keyvault-secrets_4.2.6 are up to date. Sometimes upgrading to the latest compatible version may resolve conflicts. Check for updates in your pom.xml or Gradle build file.

Example Dependency for Maven


<dependency>
<groupId>com.azure</groupId>
<artifactId>azure-security-keyvault-secrets</artifactId>
<version>4.2.6</version>
</dependency>

Example Dependency for Gradle


implementation 'com.azure:azure-security-keyvault-secrets:4.2.6'

Step 6: Test the Changes


After making all relevant adjustments, test the Spark application again. Monitor the volume of logs for any failures or exceptions occurring during the token request process and customize your troubleshooting steps based on the observed output.

Frequently Asked Questions


Q1: Why does my Spark application hang on token acquisition?
It may be caused by misconfigured dependencies or Azure credentials, or potential incompatibility with the selected Java version.
Q2: How can I check if my Java version is compatible?
Run java -version in your terminal to confirm your current version. Ideally, use Java 8 or 11 with Spark 3.
Q3: Should I upgrade my Azure dependencies when switching to Spark 3?
Yes, always update dependencies to ensure compatibility with the latest Spark features and security patches.

Conclusion


If your Spark 3 application hangs while requesting a token from Azure AD, follow these structured steps to address potential configuration, dependency, and compatibility issues. By ensuring that you are using the correct versions of Java, Azure SDK, and Spark, along with properly formatted credentials and logging, you can typically resolve these issues effectively, allowing you to leverage Azure services seamlessly within Spark. Happy coding!


Пожалуйста Авторизируйтесь или Зарегистрируйтесь для просмотра скрытого текста.

 
Вверх Снизу