• Что бы вступить в ряды "Принятый кодер" Вам нужно:
    Написать 10 полезных сообщений или тем и Получить 10 симпатий.
    Для того кто не хочет терять время,может пожертвовать средства для поддержки сервеса, и вступить в ряды VIP на месяц, дополнительная информация в лс.

  • Пользаватели которые будут спамить, уходят в бан без предупреждения. Спам сообщения определяется администрацией и модератором.

  • Гость, Что бы Вы хотели увидеть на нашем Форуме? Изложить свои идеи и пожелания по улучшению форума Вы можете поделиться с нами здесь. ----> Перейдите сюда
  • Все пользователи не прошедшие проверку электронной почты будут заблокированы. Все вопросы с разблокировкой обращайтесь по адресу электронной почте : info@guardianelinks.com . Не пришло сообщение о проверке или о сбросе также сообщите нам.

Time series Models

Lomanu4 Оффлайн

Lomanu4

Команда форума
Администратор
Регистрация
1 Мар 2015
Сообщения
1,481
Баллы
155
Here’s a point-form style article titled "The Complete Guide to Time Series Models" — perfect for a Dev.to post:

? The Complete Guide to Time Series Models


Time series modeling is essential when working with data indexed in time order — think stock prices, weather patterns, or GDP growth.

Here’s your complete point-form guide to time series models — from classic methods to deep learning.

? What is a Time Series?

  • A sequence of data points collected or recorded at specific time intervals.
  • Time is a crucial component — order matters.
  • Examples: Daily temperature, monthly sales, hourly web traffic.
? Key Characteristics of Time Series

  • Trend: Long-term upward or downward movement.
  • Seasonality: Regular patterns (e.g., quarterly demand).
  • Cyclic Patterns: Irregular cycles over years.
  • Noise: Random variations that can’t be explained.
?️ Classical Time Series Models

1. AR (AutoRegressive)

  • Predicts current value based on past values.
  • Example: AR(1):

$$
Y_t = \phi_1 Y_{t-1} + \epsilon_t
\]
$$

2. MA (Moving Average)

  • Uses past forecast errors to predict future values.
  • Example: MA(1):

$$
Y_t = \mu + \theta_1 \epsilon_{t-1} + \epsilon_t
\]
$$

3. ARMA (AR + MA)

  • Combines autoregressive and moving average components.
  • Works well for stationary data.
4. ARIMA (AutoRegressive Integrated Moving Average)

  • Adds differencing to handle trends (non-stationary data).
  • Notation: ARIMA(p, d, q)
5. SARIMA (Seasonal ARIMA)

  • Adds seasonality terms to ARIMA.
  • Notation: ARIMA(p, d, q)(P, D, Q)

? Exponential Smoothing Models

6. Simple Exponential Smoothing

  • Best for data without trend/seasonality.
  • Weighted average with exponentially decreasing weights.
7. Holt’s Linear Trend

  • Captures trend with two equations: level and trend.
8. Holt-Winters (Triple Exponential Smoothing)

  • Adds seasonality to Holt’s method.
  • Supports both additive and multiplicative seasonality.
? Machine Learning-Based Models

9. Regression Models

  • Use lag features (e.g., t-1, t-2) as inputs to a regression algorithm.
  • Algorithms: Linear Regression, Random Forest, XGBoost
10. Support Vector Regression (SVR)

  • Robust to outliers; good for non-linear patterns.
11. KNN for Time Series

  • Non-parametric, similarity-based forecasts.
? Deep Learning for Time Series

12. RNN (Recurrent Neural Network)

  • Good at handling sequences — but suffers from vanishing gradients.
13. LSTM (Long Short-Term Memory)

  • Solves RNN limitations with memory gates.
  • Popular for long-sequence forecasting.
14. GRU (Gated Recurrent Unit)

  • Simpler than LSTM, similar performance.
15. 1D CNN for Time Series

  • Detects short-term patterns using convolutional filters.
16. Transformer Models

  • Powerful for long sequences.
  • Attention mechanism allows parallel processing (e.g., Informer, Time Transformer).
? Hybrid & Specialized Models

17. Facebook Prophet

  • Handles trend, seasonality, holidays.
  • Very user-friendly API.
18. VAR (Vector AutoRegression)

  • Multivariate — forecasts multiple time series variables together.
19. State Space Models / Kalman Filters

  • For dynamic systems; used in control systems, robotics.
? Model Evaluation Metrics

  • MAE: Mean Absolute Error
  • RMSE: Root Mean Squared Error
  • MAPE: Mean Absolute Percentage Error
  • AIC/BIC: For model selection (esp. ARIMA)
? Tips for Working with Time Series

  • Always check for stationarity.
  • Use rolling windows for validation.
  • Don’t shuffle data randomly — respect time order.
  • Use lag plots, ACF/PACF for pattern detection.
  • Resample or decompose for trend/seasonality insights.
? Popular Libraries


  • Python:
    • statsmodels
    • pmdarima
    • prophet
    • scikit-learn
    • tslearn
    • darts (supports classic, ML, and DL models)
? Final Take

  • No one-size-fits-all model — start with ARIMA or Holt-Winters, then move to ML/DL as needed.
  • Understand your data's behavior before choosing a model.
  • Experiment, validate, and monitor in production — time series drift is real.


Пожалуйста Авторизируйтесь или Зарегистрируйтесь для просмотра скрытого текста.

 
Вверх Снизу