• Что бы вступить в ряды "Принятый кодер" Вам нужно:
    Написать 10 полезных сообщений или тем и Получить 10 симпатий.
    Для того кто не хочет терять время,может пожертвовать средства для поддержки сервеса, и вступить в ряды VIP на месяц, дополнительная информация в лс.

  • Пользаватели которые будут спамить, уходят в бан без предупреждения. Спам сообщения определяется администрацией и модератором.

  • Гость, Что бы Вы хотели увидеть на нашем Форуме? Изложить свои идеи и пожелания по улучшению форума Вы можете поделиться с нами здесь. ----> Перейдите сюда
  • Все пользователи не прошедшие проверку электронной почты будут заблокированы. Все вопросы с разблокировкой обращайтесь по адресу электронной почте : info@guardianelinks.com . Не пришло сообщение о проверке или о сбросе также сообщите нам.

Python Hack That Makes Code 10x Faster

Lomanu4 Оффлайн

Lomanu4

Команда форума
Администратор
Регистрация
1 Мар 2015
Сообщения
1,481
Баллы
155
✨ GRAB THESE GIFTS (FOR DEV READERS ONLY)


Copy, customize, publish. Perfect for your blog, newsletter, or content pipeline.

Imagine transforming a function that used to take seconds—or even minutes—to execute into one that returns instantly on repeated calls. Enter functools.lru_cache, Python’s built‐in memoization decorator. By caching results for given inputs, it prevents redundant computations, leading to dramatic speedups for many common tasks. In this guide, we’ll explore everything from basic usage to advanced patterns, so you can harness the full power of lru_cache in your projects.

How lru_cache Works


At its heart, lru_cache (Least‐Recently Used cache) wraps your function with an in-memory store that:

  1. Keys on arguments

  • Generates a unique, hashable key from the positional and keyword arguments you pass.
    1. Stores results

  • Keeps results in a dictionary for O(1) retrieval.
    1. Tracks usage

  • Maintains a doubly‐linked list to know which entries are least recently used.
    1. Evicts old items

  • When the cache exceeds its maxsize, it drops the oldest entry automatically.
    1. Exposes stats & control

  • Use .cache_info() to see hits/misses, and .cache_clear() to reset.

from functools import lru_cache

@lru_cache(maxsize=128)
def expensive_operation(x, y):
# Imagine heavy computation here
return x ** y

print(expensive_operation(2, 10))
print(expensive_operation.cache_info()) # Cache stats
Core Use Cases

Optimizing Recursive Algorithms


A classic example is the Fibonacci sequence:


@lru_cache(maxsize=None)
def fib(n):
if n < 2:
return n
return fib(n-1) + fib(n-2)
  • Naïve recursion re-calculates subproblems many times.
  • With caching, each distinct n computes once; all others are instant lookups.
Caching External API Calls


For functions that hit rate-limited or costly APIs:


import requests
from functools import lru_cache

@lru_cache(maxsize=32)
def get_weather(city):
resp = requests.get(f"

Пожалуйста Авторизируйтесь или Зарегистрируйтесь для просмотра скрытого текста.

{city}")
return resp.json()

# First call fetches, second call returns cached data
data1 = get_weather("London")
data2 = get_weather("London")

This saves bandwidth, reduces latency, and avoids hitting API limits.

Speeding Up Database Queries


In web apps, identical queries often repeat:


@lru_cache(maxsize=64)
def fetch_user_profile(user_id):
# Example ORM call
return User.objects.get(id=user_id)
  • Before: Every request to the profile page triggers a new DB hit.
  • After: The first lookup hits the DB; subsequent calls come from cache.
Benchmarking Performance

ScenarioWithout CacheWith lru_cache Speedup
Fibonacci(35) naive recursion~1.2 seconds~20 microseconds~60,000×
Repeated API call (10 calls)~500 ms per call~0.05 ms per call~10,000×
Identical DB query (100 calls)~10 ms per query~0.01 ms per call~1,000×
Pro tip: Always measure with tools like timeit or your framework’s profiling to get real numbers in your environment.
Advanced Techniques & Customization


  • Tuning maxsize
    • maxsize=None = unbounded cache (beware memory growth)
    • maxsize=small int = controlled memory, more misses

  • Typed caching
    • @lru_cache(maxsize=128, typed=True) treats 1 and 1.0 as distinct keys.

  • Handling mutable args
    • Convert lists/dicts to tuples/frozensets before passing.

  • Manual cache management

expensive_operation.cache_clear()
Common Pitfalls & Solutions

  1. High memory usage

  • Solution: Set a reasonable maxsize.
    1. Unhashable arguments

  • Solution: Pre-transform mutable arguments into hashable types.
    1. Hidden side effects

  • Solution: Cache only pure functions; avoid on I/O or state-mutating calls.
    1. Debugging complexity

  • Solution: Temporarily disable or clear cache during tests.
Integration with Other Caching Tools

Further Resources

  • Real Python: Caching in Python Using the LRU Cache Strategy
  • Medium: Supercharge Your Python Functions with @functools.cache
  • Stack Overflow: How does lru_cache from functools work?
Conclusion


functools.lru_cache is more than a convenience—it’s a strategic tool for improving throughput, reducing latency, and scaling your Python applications gracefully. Start by identifying hot-spot functions in your code, apply caching judiciously, and measure the gains. With the advanced tips above, you’ll be ready to tackle even the most demanding performance challenges.

? Done-for-You Kits to Make Money Online (Minimal Effort Required)


When you’re ready to scale your content without writing everything from scratch, these done-for-you article kits help you build authority, attract traffic, and monetize—fast.

Each bundle includes ready-to-publish articles, so you can:

✅ Add your branding
✅ Insert affiliate links
✅ Publish immediately
✅ Use for blogs, newsletters, social posts, or email sequences

Here’s what’s available:


→ Use these to build blogs, info products, niche sites, or social content—without spending weeks writing.

? Featured Kit


Here’s one you can grab directly:


Пожалуйста Авторизируйтесь или Зарегистрируйтесь для просмотра скрытого текста.



Пожалуйста Авторизируйтесь или Зарегистрируйтесь для просмотра скрытого текста.




? 85+ Ready-to-Publish Articles on DIY Computing, Hardware Hacking, and Bare-Metal Tech Once upon a time, computers weren’t bought—they were built. This is your blueprint to rediscover that lost world. This collection takes you deep into the hands-on world of crafting computers from the ground up.From transistors to assembly language, it’s a roadmap for tinkerers, educators, and digital pioneers who want to understand (or teach) how machines really work.? What You Get✅ 85+ clean, ready-to-publish .md files — no fluff, just structured, educational content✅ Each article explains: What it is: The core concept or component How it works: Key principles, circuits, or processes Why it matters: Relevance for today’s DIYers, hackers, and educators ✅ Built for: Tech blogs Newsletters Maker YouTube channels Podcast scripts Course materials AI-powered content workflows Hardware hacking explainers ? Inside the VaultSome of the building blocks you’ll explore: ? Transistors — The building blocks of logic ⚙ Logic Gates — From AND to XOR ? CPU Architecture — How a processor really ticks ? Instruction Set &amp; Machine Code — Talking to silicon ? RAM, ROM &amp; EPROM — The memory hierarchy decoded ? Buses &amp; I/O Ports — How components communicate ?️ BIOS &amp; UEFI — Bootstrapping your machine ? Breadboards, Soldering &amp; Wire Wrapping — Building circuits by hand ?️ Altair 8800, Apple I &amp; Commodore 64 — Lessons from vintage machines ? Programming in Forth, C &amp; Assembly — Talking to the metal …and dozens more topics spanning hardware, firmware, and the hacker spirit of personal computing.? Commercial License IncludedUse however you want:? Publish on blogs, newsletters, or Medium?️ Turn into podcast scripts or YouTube explainers? Use as content for courses, STEM programs, or maker workshops? Repurpose into tweets, carousels, swipe files, or AI prompts? Plug into your AI workflows for instant technical content? One-Time Payment$10 – Full Drop + Full Commercial Rights⚠ This isn’t a polished ebook or glossy PDF.It’s a creator’s vault: raw, markdown-formatted knowledge for educators, makers, and builders who think from the circuit up.? Get instant access and reclaim the art of building computers from scratch.

favicon
resourcebunk.gumroad.com


Пожалуйста Авторизируйтесь или Зарегистрируйтесь для просмотра скрытого текста.

 
Вверх Снизу