• Что бы вступить в ряды "Принятый кодер" Вам нужно:
    Написать 10 полезных сообщений или тем и Получить 10 симпатий.
    Для того кто не хочет терять время,может пожертвовать средства для поддержки сервеса, и вступить в ряды VIP на месяц, дополнительная информация в лс.

  • Пользаватели которые будут спамить, уходят в бан без предупреждения. Спам сообщения определяется администрацией и модератором.

  • Гость, Что бы Вы хотели увидеть на нашем Форуме? Изложить свои идеи и пожелания по улучшению форума Вы можете поделиться с нами здесь. ----> Перейдите сюда
  • Все пользователи не прошедшие проверку электронной почты будут заблокированы. Все вопросы с разблокировкой обращайтесь по адресу электронной почте : info@guardianelinks.com . Не пришло сообщение о проверке или о сбросе также сообщите нам.

"My Open Source Journey"

Sascha

Заместитель Администратора
Команда форума
Администратор
Регистрация
9 Май 2015
Сообщения
1,552
Баллы
155
From Idea to AI-Powered CRM: How I Built a Semantic Search App with MindsDB + Ollama

🚀 Introduction


A few weeks ago, I set out on a challenge — to bring AI intelligence into everyday CRM systems.

The idea was simple:

“What if customer support agents could ask their CRM questions in plain English — and get meaningful, AI-generated answers instantly?”

That idea became my project: AI-Powered CRM Semantic Search, built using MindsDB and Ollama.

It wasn’t just another coding exercise — it was part of the MindsDB AI Use Case Contribution Track, and it completely changed how I see AI integrations, local LLMs, and real-world data workflows.

💡 The Problem That Sparked It


Traditional CRM systems are powerful, but they make humans work hard.
Data is buried inside multiple tables — leads, tickets, customer notes, and chat logs.

Imagine being a support agent trying to find answers fast while a customer waits.
A keyword search like “refund” or “address change” gives random results with no real context.

That’s when I realized:

“CRM search needs to think like a human, not like a database.”

So, I decided to build semantic search — an AI layer that understands intent, not just keywords.

🧩 The Building Blocks


I wanted this to be practical — lightweight, local, and privacy-first.
Here’s what powered it:


Пожалуйста Авторизируйтесь или Зарегистрируйтесь для просмотра скрытого текста.



⚙️ How It Works


User → Streamlit App (ask query)

MindsDB (semantic reasoning)

Ollama (generate AI response)

CRM Database (data retrieval)

When a user types a query like

“My refund has been delayed for 3 weeks, what should I do?”

MindsDB performs a semantic search on the CRM database, finds the relevant records, and passes them to Ollama.
The local model then generates a context-aware reply — all running completely offline.

✨ What Makes It Special

  • Local-first execution: No API keys or external dependencies
  • AI-driven suggested replies: Smart answers generated from real CRM data
  • Semantic search: Understanding intent, not just keywords
  • CSV upload: Dynamic CRM dataset retraining and ingestion
  • Simple UI: Streamlit-based interface anyone can use
🖥️ Demo Snapshot


When I first saw the system respond intelligently to a customer query, it felt surreal.
A plain text query turned into a structured, empathetic AI reply.

Example:

User: “My refund has been delayed for 3 weeks. What should I do?”
AI Reply: “I apologize for the delay. Several refund cases, including yours, are pending. Please contact support to expedite your refund.”

It felt like watching a CRM come alive.

💭 What This Project Taught Me


This project was more than a technical build — it was a personal transformation.

  • I learned how MindsDB bridges SQL and AI, turning queries into intelligent actions.
  • I integrated Ollama’s local LLMs to preserve privacy while maintaining performance.
  • I explored semantic search and RAG for context-aware systems.
  • Most importantly, I discovered how data and empathy can come together to improve customer experience.

Every time I refined a prompt or optimized a query, I realized that building with AI isn’t just about code — it’s about designing systems that understand humans better.

🔮 Next Steps


The journey doesn’t stop here. I’m planning to:

  • Add a vector database (FAISS / Chroma) for faster similarity search
  • Implement a full RAG pipeline for improved context retrieval
  • Integrate with real-time CRM APIs like HubSpot or Salesforce

📦 Repository

📂 🔗 GitHub:

Пожалуйста Авторизируйтесь или Зарегистрируйтесь для просмотра скрытого текста.



❤️ Final Thoughts


When I started this project, I wanted to learn MindsDB.
But I ended up learning how AI, data, and community can spark real innovation.

This project ignited my passion for open-source contribution — it pushed me to focus, stay consistent, and build with purpose.
It also showed me that you don’t need massive infrastructure to make an impact — you just need curiosity, courage, and commitment to keep experimenting.

If you’re passionate about AI + data + open-source, explore MindsDB.
You’ll discover what I did — that it’s not just a platform, it’s a gateway to building meaningful AI systems that solve real problems.

👋 About the Author


Hi! I’m Akash, a recent Computer Science graduate who’s deeply interested in AI, open-source, and data-driven applications.

Building this project was my starting point in exploring open source seriously — it helped me gain confidence, improve my skills, and connect with inspiring developer communities like MindsDB.

I’m currently focused on contributing to open-source projects, learning advanced AI workflows, and preparing for my first full-time opportunity in tech.

Let’s connect and collaborate! 🚀
🔗 GitHub:

Пожалуйста Авторизируйтесь или Зарегистрируйтесь для просмотра скрытого текста.





Источник:

Пожалуйста Авторизируйтесь или Зарегистрируйтесь для просмотра скрытого текста.

 
Вверх Снизу