• Что бы вступить в ряды "Принятый кодер" Вам нужно:
    Написать 10 полезных сообщений или тем и Получить 10 симпатий.
    Для того кто не хочет терять время,может пожертвовать средства для поддержки сервеса, и вступить в ряды VIP на месяц, дополнительная информация в лс.

  • Пользаватели которые будут спамить, уходят в бан без предупреждения. Спам сообщения определяется администрацией и модератором.

  • Гость, Что бы Вы хотели увидеть на нашем Форуме? Изложить свои идеи и пожелания по улучшению форума Вы можете поделиться с нами здесь. ----> Перейдите сюда
  • Все пользователи не прошедшие проверку электронной почты будут заблокированы. Все вопросы с разблокировкой обращайтесь по адресу электронной почте : info@guardianelinks.com . Не пришло сообщение о проверке или о сбросе также сообщите нам.

How We Launched 10x Faster in Production

Lomanu4 Оффлайн

Lomanu4

Команда форума
Администратор
Регистрация
1 Мар 2015
Сообщения
1,481
Баллы
155
Hi everyone! I’m Gentian Elmazi, a software engineer with over ten years of experience and co-founder of Infinitcode.com. At our company, we partner with businesses across industries—outsourcing the development of web applications powered by deep tech like AI, NLP, blockchain and so on.

Our Established Standards


From day one, we’ve enforced maintainable, readable, and scalable code. We adopt layered architectural patterns with dependency injection for modularity and testability. For source control, we follow GitHub Flow:

  • feature/* branch
  • → Pull request
  • → Peer review
  • → Merge into dev
  • → Production release
The Bottleneck We Hit


As our client base and project scope grew, our senior engineers spent roughly 40% of their time on code reviews. Constantly context-switching across multiple repositories began to erode our strict standards—and that led to production issues we simply couldn’t ignore.

The Promise (and Pitfalls) of AI


When AI assistants promised 30–40% productivity boosts, we were eager to adopt them. Yet out-of-the-box AI snippets often:

  1. Violated our company rules
  2. Introduced inconsistent patterns
  3. Missed critical edge cases
Piloting Infinitcode.ai’s Code Reviewer


We decided to take a leap of faith and built an internal AI code-reviewer—now in public alpha as Infinitcode.ai—to help streamline our workflow. Within days, we saw:


  • 35% Productivity Gain

    Automated PR summaries and inline suggestions let senior engineers focus on high-value reviews, shrinking review cycles from days to hours.


  • 30% Performance Improvement

    The AI flagged inefficient loops and unnecessary computations that we’d normally catch only after profiling in production.


  • 15+ Security Bugs Caught

    Critical vulnerabilities surfaced early in pull requests, not weeks after deployment.


  • 120+ Typos & Style Violations Fixed

    Consistent code formatting and improved documentation boosted overall readability.
Example Security Fix

⚠ Risk: Non-cryptographic UUIDv4 generation in bulk operations risked collisions under high-concurrency loads.

? Fix: Implemented crypto.randomUUID() with batch-safe collision checks, ensuring unique identifiers even when processing thousands of records per second.
Even with a decade of hands-on coding, I likely would’ve missed this subtle bug until it hit production—so having AI catch it early was truly a game-changer.

The charts below illustrate the 35% productivity and 30% performance improvements we achieved—plus the dozens of security bugs and 120+ typos our AI reviewer caught—demonstrating its measurable impact on our workflow


Пожалуйста Авторизируйтесь или Зарегистрируйтесь для просмотра скрытого текста.



Issues detected by AI code reviewer


Key Features That Helped Us



  • Multi-Model Integration

    DeepSeek’s backbone matched our use cases, letting us switch models as needed.


  • Custom Rulesets

    Uploading our linting and security policies ensured AI suggestions aligned perfectly with our coding standards.


  • Rapid Support & Iteration

    Working directly with the team allowed us to fine-tune the tool within hours, not weeks.
Lessons Learned & Next Steps


  1. AI Empowers, Doesn’t Replace

    Developers remain central—AI handles routine checks so humans tackle design and architecture.


  2. Iterate on Your Rules

    Continuously refine your AI’s rulesets and model settings as your codebase evolves.


  3. Measure & Visualize

    Track metrics (productivity gains, bug catch rate, review times) to demonstrate ROI and keep stakeholders aligned.

I’d love to hear how AI is reshaping your code reviews—share your experiences or questions in the comments below!


Пожалуйста Авторизируйтесь или Зарегистрируйтесь для просмотра скрытого текста.

 
Вверх Снизу