• Что бы вступить в ряды "Принятый кодер" Вам нужно:
    Написать 10 полезных сообщений или тем и Получить 10 симпатий.
    Для того кто не хочет терять время,может пожертвовать средства для поддержки сервеса, и вступить в ряды VIP на месяц, дополнительная информация в лс.

  • Пользаватели которые будут спамить, уходят в бан без предупреждения. Спам сообщения определяется администрацией и модератором.

  • Гость, Что бы Вы хотели увидеть на нашем Форуме? Изложить свои идеи и пожелания по улучшению форума Вы можете поделиться с нами здесь. ----> Перейдите сюда
  • Все пользователи не прошедшие проверку электронной почты будут заблокированы. Все вопросы с разблокировкой обращайтесь по адресу электронной почте : info@guardianelinks.com . Не пришло сообщение о проверке или о сбросе также сообщите нам.

How to Resolve Numeric Overflow When Inserting in Redshift?

Lomanu4 Оффлайн

Lomanu4

Команда форума
Администратор
Регистрация
1 Мар 2015
Сообщения
1,481
Баллы
155
Inserting data from one table to another in Amazon Redshift can sometimes lead to problems, especially with numeric fields. If you are trying to insert the sum of the net_rate column from the scans table into the scan_cost column of the visits_by_scan table and encountering a numeric overflow error, this blog will guide you through understanding why this occurs and how you can resolve it.

Understanding Numeric Overflow in Redshift


Numeric overflow occurs when an arithmetic operation results in a numeric value that exceeds the storage capacity of the numeric type defined in your database schema. In your case, the issue arises while trying to sum the net_rate values, which are being cast to a decimal type with a precision of 30 and a scale of 4. This means you can store a number up to 30 digits long, where four digits are reserved for the fractional part.

If the total sum of net_rate exceeds the maximum for the scan_cost column in the visits_by_scan table, you will encounter a numeric overflow error. To prevent this, you need to adjust your calculations or the data types involved.

Steps to Insert Data Without Errors

Step 1: Check Column Data Types


First, ensure that the data types of both net_rate in scans and scan_cost in visits_by_scan can handle the values you are inserting. You can verify the definitions of these columns with the following SQL queries:

-- Check the data type of net_rate
SELECT column_name, data_type
FROM information_schema.columns
WHERE table_name = 'scans';

-- Check the data type of scan_cost
SELECT column_name, data_type
FROM information_schema.columns
WHERE table_name = 'visits_by_scan';

Step 2: Adjust the Data Type if Needed


If you find that the data type of scan_cost is too restrictive (for example, something like DECIMAL(10,2)), consider altering it to accommodate larger sums. Here's how you can do it:

ALTER TABLE visits_by_scan
ALTER COLUMN scan_cost TYPE DECIMAL(30, 4);

Step 3: Use a Different Aggregation Strategy


Instead of summing all net_rate values at once, consider breaking down the data into smaller chunks or aggregating them in a way that avoids overflow. For example, you could insert the aggregated sums into temporary tables or intermediate calculations before finally inserting them into the visits_by_scan table:

-- Inserting in smaller batches
CREATE TEMP TABLE temp_visits AS
SELECT sum(cast(s.net_rate as decimal(30,4))) as total_cost
FROM scans s;

INSERT INTO visits_by_scan (scan_cost)
SELECT total_cost
FROM temp_visits;

Step 4: Validate the Total Before Insertion


It is also beneficial to check the computed total before attempting the insert. You can do this by running the SELECT query separately:

SELECT sum(cast(s.net_rate as decimal(30,4))) AS total_cost
FROM scans s;


Review the value of total_cost and ensure it fits within the limits of the scan_cost column.

Frequently Asked Questions

What should I do if the overflow still occurs?


If you are still facing issues, consider reviewing your data for extreme outliers or incorrect values that might inflate totals unnecessarily. Additionally, re-evaluating your data types for net_rate might provide more insight.

Can I just change the scale and precision temporarily?


While it's possible to change the scale and precision on a temporary basis, it's best practice to maintain consistent data types that reflect your data accurately. Temporary changes can lead to confusion and data integrity issues in the long term.

In conclusion, resolving numeric overflow errors in Redshift mainly involves checking your column definitions, potentially adjusting data types, and ensuring that you aggregate your data adequately to avoid exceeding limits. Following these steps will help ensure a smooth insertion process for your data into the visits_by_scan table.


Пожалуйста Авторизируйтесь или Зарегистрируйтесь для просмотра скрытого текста.

 
Вверх Снизу